Introducción a la computación

Electrónica IV

Mg.Ing. Esteban Volentini (evolentini@herrera.unt.edu.ar)

https://facetvirtual.facet.unt.edu.ar/course/view.php?id=165

Introducción: Temas a tratar

- Componentes de una computadora
 - Procesador, Memoria, E/S y Buses.
 - Ejecución de un programa
- Conceptos de Software
 - Lenguaje de Maquina y Lenguaje Superior
 - Ensamblador, interprete y compilador

Breve historia de la computación

 Las primeras computadoras se diseñaron para automatizar cálculos matemáticos repetitivos

 Una secuencia de instrucciones realizaba operaciones sobre datos variables almacenados en una memoria

Arquitectura Harvard

- Las primeras computadoras aplican este concepto literalmente
- Tenían una memoria para las instrucciones y otra memoria separada para los datos
- La modificación del programa se realizaba en forma externa a la computadora

Arquitectura Von Newman

- En 1945 John Von Newman propone la unificación de las memorias de datos y de instrucciones
- Tambien divide el procesador en una unidad Aritmetico-Lógica y un sistema de control
- Ahora un programa puede ser manipulado como datos por otro programa

Arquitectura de una computadora

- La memoria almacena instrucciones y datos
- El procesador ejecuta las instrucciones para transformar los datos
- La entrada/salida permite la comunicación con el mundo exterior

Interfases de Entrada/Salida

- Los dispositivos externos se controlan leyendo y/o escribiendo varios registros
- Para el programa estos registros se comportan como direcciones de memoria normales
 - Los registros de control permiten configurar el modo de funcionamiento del dispositivo
 - Los registros de estado permiten conocer las novedades sobre el funcionamiento del dispositivo
 - Los registros de datos permiten intercambiar información con el dispositivo

Entradas y Salidas Digitales

- Solo pueden adoptar dos valores lógicos (0 y 1) que se corresponden con dos valores de tensión (Vss y Vdd)
- Entradas Digitales: El valor de tensión en un terminal del dispositivo se traduce en el estado de un bit en una dirección de memoria determinada
- Salidas Digitales: El estado de un bit de una dirección de memoria determinada se traduce en el valor de tensión de un terminal del dispositivo

Entradas y Salidas Analógicas

- Entradas Analógicas: El valor de tensión en un terminal del dispositivo se traduce proporcionalmente en el valor de numérico almacenado en una dirección de memoria determinada
- Salidas Analógicas: El valor numérico almacenado en una dirección de memoria determinada se traduce proporcionalmente en el valor de tensión de un terminal del dispositivo
- Los conversores utilizados determinan la cantidad de bit con los cuales se representan los valores numéricos de entrada o de salida

Sistemas embebidos

- Se usan para una aplicación específica
 - Incluyen una computadora y la electrónica necesaria para resolver el problema.
 - La solución esta embebida en el sistema.
- Ejecutan siempre el mismo programa
 - No es accesible al usuario del dispositivo.
 - Resuelve un rango definido de problemas.

Sistemas de propósito general

- Las identificamos como computadoras
 - Procesadores como Pentium, Athlon, etc.
- Ejecución de diversos programas
 - Herramientas como Word, Excel, Chrome
- Mucha potencia de cálculo
 - Consumo de potencia mayor que en un μC

Instrucciones y datos

- Ejemplo de datos
 - Posición A contiene el dato X
 - Posición B contiene el dato Y
- Ejemplo de instrucciones
 - Tome X de la posición A
 - Sume el valor Y de la posición B
 - Guarde el resultado en la posición C
- Las instrucciones del programa se pueden escribir en diferentes lenguajes

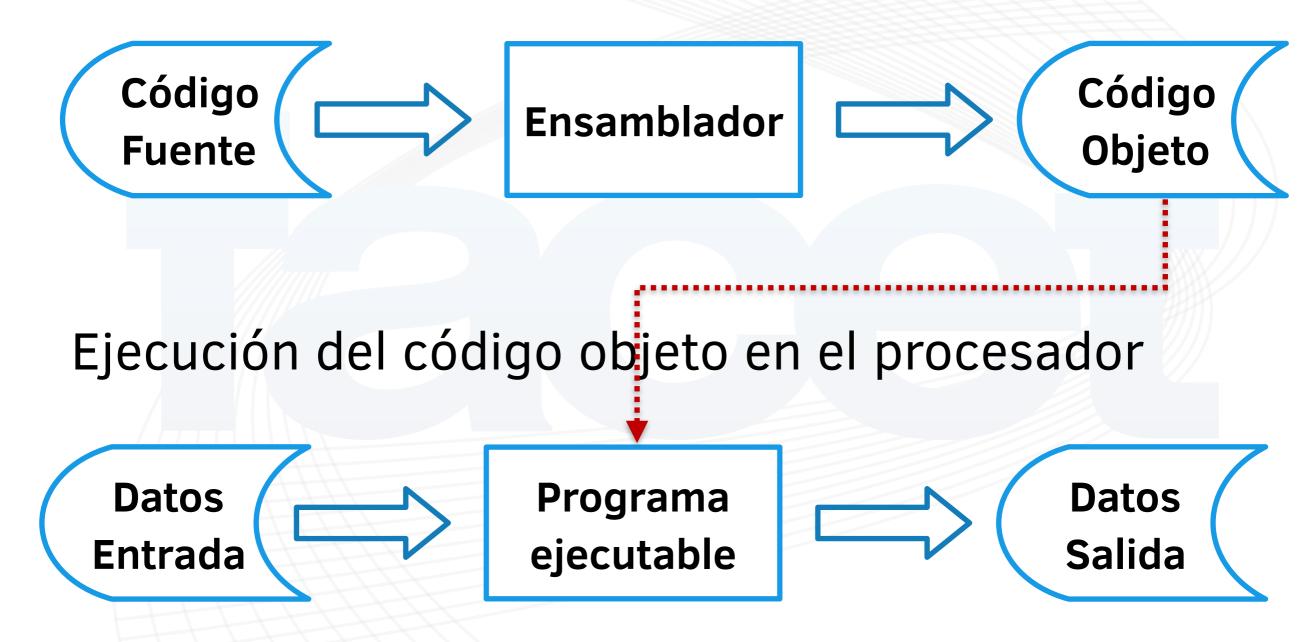
Lenguaje de máquina

- Es el lenguaje nativo del procesador, esta conformado por las Instrucciones del ISA
 - Tal como son cargadas en memoria y leídas por el CPU
 - Expresados como cadenas binarias de '0' y '1'
- Las primeras CPUs se programaban así
 - Propenso a errores: basta con cambiar un 1 por un 0
 - Ilegible e Indocumentable
 - Requiere mucho tiempo de las personas
 - Al principio lo caro eran las computadoras
- Escribir en Hexadecimal es un primer avance

Lenguaje ensamblador

- Conformado por las instrucciones del ISA
 - Pero escritas en código mnemotécnico
 - Correspondencia uno a uno con lenguaje de máquina
 - Es necesario traducirlas antes de ejecutarlas
- El traductor se llama ensamblador
 - Tarea mecánica realizada por un programa traductor
 - Incorpora también símbolos para variables y rótulos
 - Acepta comentarios y directivas al ensamblador para modificar el resultado de la traducción

Lenguaje ensamblador


- La sentencia add a,b,c calcula la operación a = b + c
- En esta sentencia a, b y c son los operandos y pueden ser variables y/o constantes
- Los operandos pueden estar almacenados en registros o en memoria

Programa en ensamblador

```
# Define la sección de programa
      .text
      .globl main
                        # Define el punto de entrada del código
main:
      la s0, dos
                      # Se apunta un registro al bloque de datos
      lb t0, 0(s0)
                      # Se carga un registro con una variable
      lb t1, 1(s0)
                      # Se carga otro registro con otra variable
      add t2, t0, t1 # Se calcula la suma de los dos registros
      sb t2, 2(s0)
                      # Se almacena el resultado en una variable
                      # Se repite un autolazo indefinidamente
lazo: i
         lazo
                      # Define la sección de los datos
      .data
dos:
      .byte 2
                      # Inicializa una variable con el valor dos
tres: .byte 3
                      # Inicializa una variable con el valor tres
                      # Reservar espacio para una variable
      .space 1
res:
```

Ensamblado y ejecución

Traducción del código fuente a código objeto

06/03/2025 Electrónica IV 17

Ventajas y desventajas

- Desventajas
 - Distintas máquinas tienen diferentes lenguajes
 - Está orientado a la máquina y no al usuario
 - Hay que ser un experto
 - Difícil desarrollar mercados...
- Ventajas
 - Manejo exacto de tiempo y memoria
 - Para aplicaciones críticas en tiempo real

Lenguaje superior

- Son lenguajes orientados a resolver problemas
 - Están pensados para los usuarios
 - Cada sentencia se traduce en varias instrucciones del lenguaje de máquina
 - Son independientes de la máquina para la cual desarrolla el programa
- Dos tipos de traductores diferentes

Lenguajes compilados

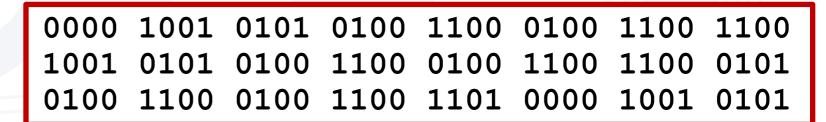
- Se traduce todo el programa a la vez
- Se almacena una versión ejecutable del programa completo
- La traducción no es única y puede optimizarse
- Un cambio en el programa fuente implica una nueva compilación
- Resulta más difícil depurar errores, sobre todo si el ejecutable está optimizado

Funcionamiento del compilador

Lenguaje de alto nivel

```
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;
```

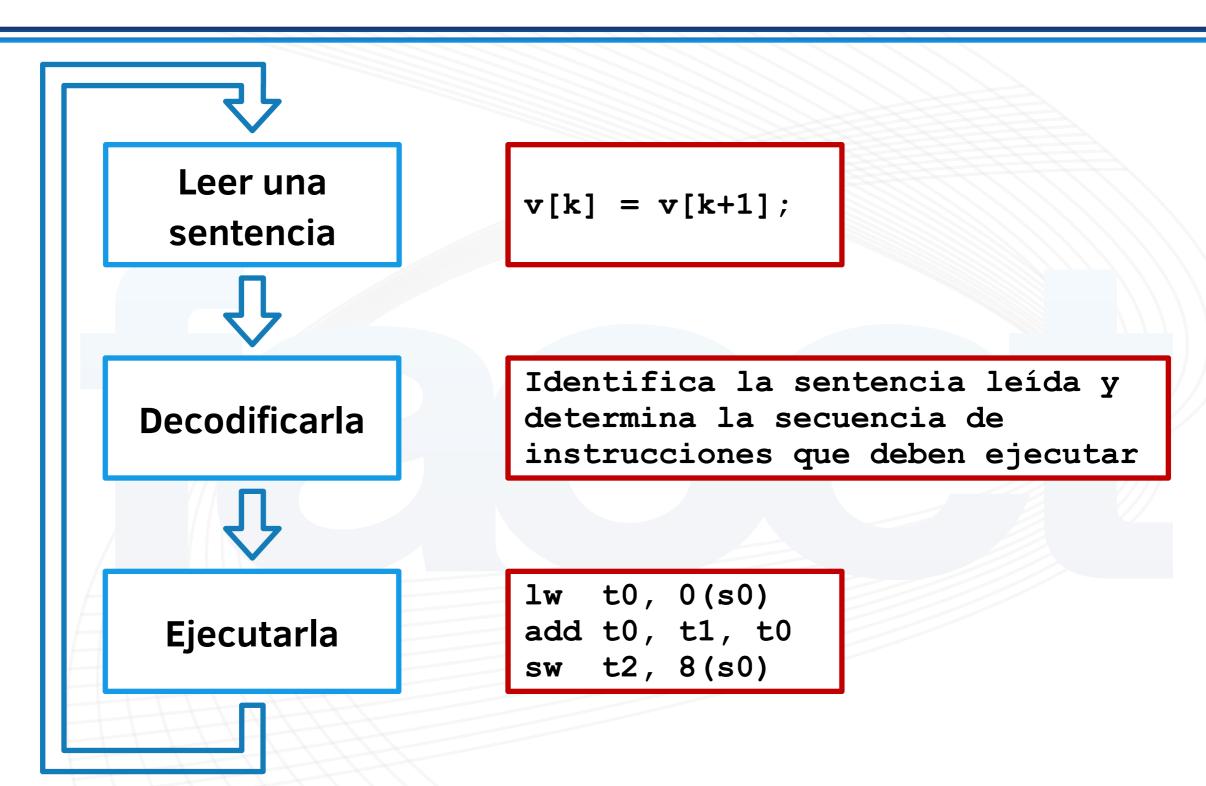

Compilador


Lenguaje ensamblador

```
lw t0, 0(s0)
add t0, t1, t0
sw t2, 8(s0)
```


Ensamblador

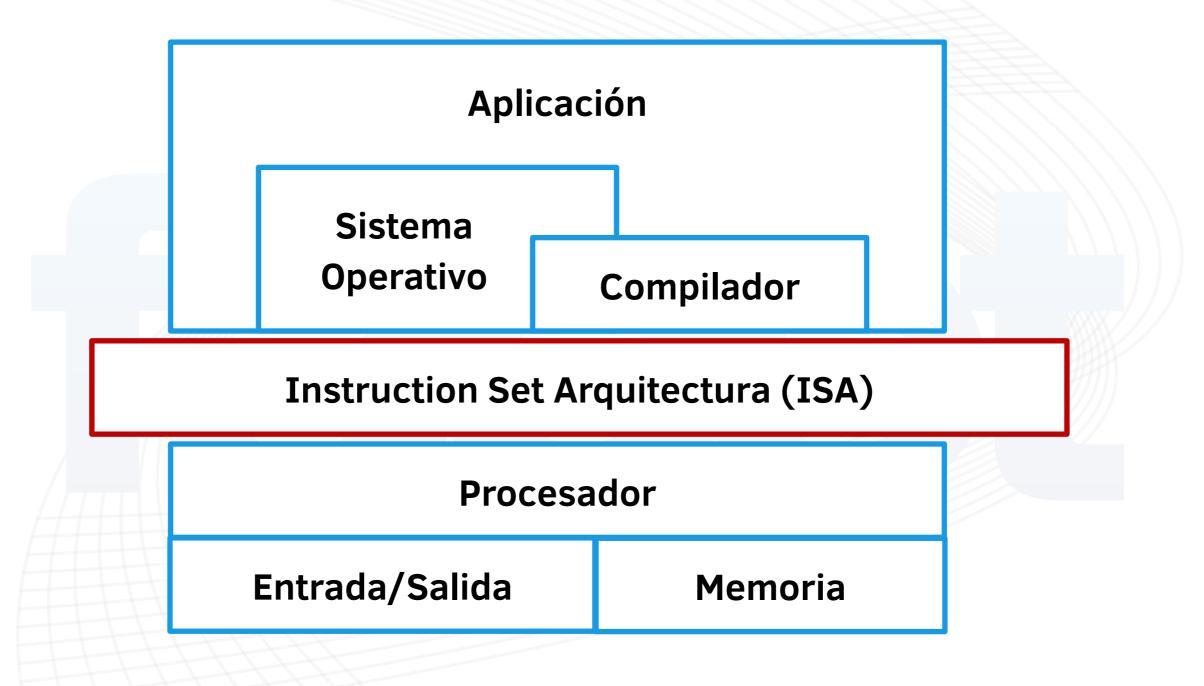
Código de máquina


ISA

Procesador

Lenguajes interpretados

- La traducción se realiza en tiempo de ejecución, tomando las sentencias de a una
- No se almacena una versión ejecutable del programa
- Es muy difícil optimizar porque no se conoce el programa completo
- Se pueden realizar cambios en el programa fuente mientras se ejecuta
- Es mucho más sencillo depurar errores


Funcionamiento del interprete

Sistemas Operativos

- Gestionan en forma eficiente los recursos de una computadora
 - Permiten compartir recursos
 - Definen mecanismos de seguridad
- Facilitan el uso de las mismas
 - Facilitan a los programadores interactuar con la computadora y sus periféricos
 - Facilitan al usuario la ejecución de los diferentes programas

Niveles de abstracción

